Translate

lunes, 29 de junio de 2015

Funcíon Trigonométrica

En matemáticas, las funciones trigonométricas son las funciones establecidas con el fin de extender la definición de las razones trigonométricas a todos los números reales y complejos.

Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.

Conceptos Básicos

Las funciones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas las describen como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.

Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunes antiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente ; por ejemplo el verseno (1 − cos θ) y la exsecante (sec θ − 1).


Definiciones respecto de un triángulo rectángulo

Para definir las razones trigonométricas del ángulo:  \alpha , del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:

La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.
El cateto opuesto (a) es el lado opuesto al ángulo  \alpha .
El cateto adyacente (b) es el lado adyacente al ángulo  \alpha .
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo rectángulo los ángulos no rectos se encuentran entre 0 y π/2 radianes. Las definiciones que se dan a continuación definen estrictamente las funciones trigonométricas para ángulos dentro de ese rango:


Funciones trigonométricas de ángulos notables


Definición para un número real cualquiera

No es posible utilizar la definición dada anteriormente, un coseno de \alpha para valores de \alpha menores o iguales a 0 o valores mayores o iguales a π/2, pues no se podría construir un triángulo rectángulo tal que uno de sus ángulos mida \alpha radianes. Para definir los valores de estas funciones para valores comprendidos entre 0 y 2π, se utilizará entonces una circunferencia unitaria, centrada en el origen de coordenadas del plano cartesiano. Se definirán las funciones trigonométricas seno y coseno como la abscisa y la ordenada, respectivamente, de un punto P perteneciente a la circunferencia, siendo \alpha el ángulo, medido en radianes, entre el semieje positivo x y el segmento que une el origen con P.

A partir de ecuaciones diferenciales

Las funciones seno y coseno satisfacen la igualdad:


Es decir, la segunda derivada de cada función es la propia función con signo inverso. Dentro del espacio funcional de dos dimensiones V, que consiste en todas las soluciones de esta ecuación.

Dado que las funciones seno y coseno son linealmente independientes, juntas pueden formar la base de V. Este método para definir las funciones seno y coseno es esencialmente equivalente a utilizar la fórmula de Euler. Además esta ecuación diferencial puede utilizarse no solo para definir al seno y al coseno, con ella también se pueden probar las identidades trigonométricas de las funciones seno y coseno.

Además, la observación de que el seno y el coseno satisfacen y′′ = −y implica que son funciones eigen del operador de la segunda derivada.

La función tangente es la única solución de la ecuación diferencial no lineal.


satisfaciendo la condición inicial y(0) = 0. Existe una interesante prueba visual de que la función tangente satisface esta ecuación diferencial.

Definiciones Analiticas

La definición analítica más frecuente dentro del análisis real se hace a partir de ecuaciones diferenciales. Usando la geometría y las propiedades de los límites, se puede demostrar que la derivada del seno es el coseno y la derivada del coseno es el seno con signo negativo. (Aquí, como se hace generalmente en cálculo, todos los ángulos son medidos en radianes).


El teorema de Picard-Lindelöf de existencia y unicidad de las ecuaciones diferenciales lleva a que existen las funciones anteriores que se llaman respectivamente seno y coseno, es decir:


Esta definición analítica de las funciones trigonométricas permite una definición no-geométrica del número π, a saber, dicho número es el mínimo número real positivo que es un cero de la función seno.

Funciones trigonométricas inversas

Las tres funciones trigonométricas inversas comúnmente usadas son:

Arcoseno es la función inversa del seno de un ángulo. El significado geométrico es: el arco cuyo seno es dicho valor.
La función arcoseno real es una función, es decir, no está definida para cualquier número real. Esta función puede expresarse mediante la siguiente serie de taylor:

Arcocoseno es la función inversa del coseno de un ángulo. El significado geométrico es: el arco cuyo coseno es dicho valor.

Es una función similar a la anterior, de hecho puede definirse como:

Arcotangente es la función inversa de la tangente de un ángulo. El significado geométrico es: el arco cuya tangente es dicho valor.
A diferencia de las anteriores la función arcotangente está definida para todos los reales. Su expresión en forma de serie es:





Representación Gráfica

Generalizaciones

Las funciones hiperbólicas son el análogo de las funciones trigonométricas para una hipérbola equilátera. Además el seno y coseno de un número imaginario puro puede expresarse en términos de funciones hiperbólicas.
Las funciones elípticas son una generalización biperiódica de las funciones trigonométricas que en el plano complejo sólo son periódicas sobre el eje real. En particular las funciones trigonométricas son el límite de las funciones elípticas de Jacobi cuando el parámetro del que dependen tiende a cero.